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The paper deals with the design approach of a subdefinite mechatronic system and focuses
on the sizing stage of a gearbox of a wind turbine based on the interval computation method.
Indeed, gearbox design variables are expressed by intervals to take into account the uncer-
tainty in the estimation of these parameters. The application of the interval computation
method allows minimizing the number of simulations and enables obtaining a set of solutions
instead of a single one. The dynamic behavior of the gearbox is obtained using the finite
element method. The challenge here is to get convergent results with intervals that reflect
the efficiency of the applied method. Thus, several mathematical formulations have been
tested in static study and evaluated in the case of a truss. Then the interval computation
method was used to simulate the behavior of the wind turbine gearbox.
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1. Introduction

Mechatronics is one of the most dynamically developing fields of technology and science. In fact,
mechatronics refers to systems which integrate mechanical and electrical components linked
through a control system and information technology (Dieterle, 2005; Habib, 2007; Karnopp et
al., 2012). The preliminary design of sub-defined mechatronic systems is upstream of the de-
signing process (Hamza et al., 2015; Amendola et al., 2017). Indeed, from a set of requirements
and constraints, it consists in determining a set of possible solutions that respect the required
performances in a very large research area (Hammadi et al., 2012; Guizani et al., 2014). This
choice is structured by a partial and uncertain knowledge of the future system and its environ-
ment. The conventional design approaches used to study the dynamic behavior of a mechatronic
system are based on a repetitive loop type “dimensioning-modeling and simulation – return to
the initial stage in case of divergence or failure” (Alefeld and Mayer, 2000; Trabelsi et al., 2012).
These sizing techniques appear obsolete. Moreover, these classic approaches are often expensive
and require higher computation times in order to obtain the optimal values of design parameters
(Martins and Lambe, 2013). In recent years, several methods have been developed to treat this
kind of problems (Hughes, 2012; Ma et al., 2013) and, more precisely, in systems in which equa-
tions of motions are defined by partial differential equations. Among the methods used to solve
this type of equations, we cite the finite element method (FEM) (Hughes, 2012; Zienkiewicz
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and Taylor, 2005). In order to consider uncertainty in some design parameters of the system to
be designed, the FEM associated with the interval calculation method was used to model and
simulate its dynamic behavior with uncertainty (Gilewski et al., 2015; Fang et al., 2015).

In the works cited previously, the coupling between the interval computation and FEM
provided generally disappointing results and often divergent (Ma et al., 2013, Gilewski et al.,
2015). Indeed, the area of the obtained solutions increases when the simulation moves away from
the starting points. Therefore, the aim of this paper is to find a solution, which makes the use
of the interval computation with FEM possible in the dynamic study. For that, we started with
static sizing of a truss as a simple example. Many series of simulations were done in order to
reduce the divergence of the results and to choose an optimal mathematical formulation. Then,
we chose as a mechatronic system the gearbox of a wind turbine to study its dynamic behavior.
The main idea of this work is to simulate with bounded values describing behavior of the system,
contrary to the conventional method that is based on a fixed value.

In fact, the bounded values in the case of a truss are useful for a material that presents
lightly different proprieties or for composite materials whose properties are inconstant. In the
case of a gearbox, the challenge is to obtain convergent results that reflect the efficiency of the
use of the interval computation technique coupled with FEM.

The remaining of this paper is organized as follows. First, the problem of static sizing of a
truss using FEM coupled with the interval computation method is presented in Section 2. Then,
in Section 3, the previously mentioned method is applied to the case of the gearbox system of
a wind turbine to obtain the dynamic behavior with uncertainty. Finally, some conclusions are
drawn based on the obtained results in Section 4.

2. Static simulation of a truss with uncertainty

The objective of this part is to evaluate the interval computation method to statically simulate
systems that present uncertainties in their design parameters, and in which their behavior models
are defined by partial differential equations.

The chosen truss presents a well-known example in metal structures. It is composed of two
perpendicular similar structures and contains nine nodes articulated and fourteen bars. It is
illustrated in Fig. 1. The structure is subjected to a vertical point load Fr = 100 kN applied at
node number three. The boundary conditions taken into account are support bearings at nodes
one and seven.

Fig. 1. Truss

After characterization of the structure, the discretization with FEM is done in the next
Section. The values of different parameters used in the studied model are given in Table 1.
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Table 1. Characteristics of the truss

Variables Nomenclature Values Units

E Young’s modulus 2 · 1011 N/m2

S section 0.01 m2

L1 = L2 = L3 = L8 = L9 = L10 length of bars 1,2,3,8,9 and 10 10 m

L4 = L5 = L6 = L7 = L11 length of bars 4,5,6,7,11,12,14 10
√

2 m
= L12 = L14 = L15 and 15

2.1. Finite Element Method: elementary element

The truss is discretized with dabble-node elements with two degrees of freedom. Therefore,
the components of the displacement vector u are written as follows: u = [x1, y1, x2, y2]

T.

Fig. 2. Two-node element

The stiffness matrix is expressed by

Kp =











s1 0 −s1 0
0 0 0 0
−s1 0 s1 0
0 0 0 0











s1 =
ES

L
(2.1)

In addition, T is the transformation matrix

T =











cos θ sin θ 0 0
− sin θ cos θ 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ











(2.2)

After definition of the elementary matrix of different parts of the structure, the chosen model is
detailed in the next part.

2.2. Calculation of unknown displacements

The unknown displacements are solutions to the equation

KX = F (2.3)

where K is the stiffness matrix, X is the unknown displacement vector and F is the nodal forces
vector

F = [0, 0, 0, 0, 0, Fr , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
T

X = [x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6, x7, y7, x8, y8, x9, y9]
T

(2.4)
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The system is evaluated by three mathematical formulations which were developed by Gauss,
Krawski and Hansen (Nirmala et al., 2013; Hansen and Sengupta, 1981; Neumaier, 1999). To
avoid possible rounding errors and divergent results, we propose to use an intersection method. It
consists in taking an intersection between three intervals generated by the previously mentioned
methods. The idea is to obtain solution intervals as small as possible, as shown in Fig. 3.

Fig. 3. Enclosed set for three different methods

Therefore, different formulations are tested in order to compare the accuracy of the methods
and to prove validity of the intersection method.

2.3. Results of interval computation

The calculated displacements with a fixed value of Young’s modulus E are presented
in the following vector X = [0, 0, 0.0151,−0.4916,−0.0000,−1.4775, 0.2962,−0.2534, 0.3265,
−0.7602, 0.2034,−0.7388, 0, 0,−0.2677,−0.6157,−0.2677,−0.8618].

The displacement vector values calculated with the fixed value of E will be useful to make
a comparison with the values obtained by calculation with intervals. Thus, uncertainty of dif-
ferent percentages (from 0.2% to 2%) is introduced into Young’s modulus E in order to test
various methods mentioned previously. To correctly interpret the results obtained in Table 2,
the displacements of nodes number three and eight are plotted in both x and y directions as a
function of the percentage of uncertainty.

Through Fig. 4, we note that the envelopes obtained with the methods of Hansen and the
intersection are closer to the displacement of nodes number three and eight simulated with fixed
values. Indeed, the framing envelope given by these two methods is less thick compared to the
method of Gauss and Krawski. The efficient framing is given by the intersection method since
it provides the smallest areas.

In the next Section, these methods are applied in the case of dynamic simulation of a gearbox
system of a wind turbine.

3. Gearbox system of a wind turbine

The gearbox of a wind turbine is a system to reduce the motor rotation speed while increasing
its torque. The model of the system is composed of three components: the motor, reducer and
transmission part (Chaari et al., 2016). The transmission part comprises four elements: the drive
and driven shaft, pinion and wheel, as shown in Fig. 5.

The studied gearbox has parallel axes composed of two cylindrical wheels with straight teeth.
The different dimensions of the analyzed example are mentioned in Table 3.
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Table 2. Values of displacements with uncertainties

Uncer-
Gauss Krawski Hansen Intersection

tainty

x3
[mm]

0% 0 0 0 0
0.2% [−0.1680, 0.1567] [−0.0346, 0.0346] [−0.0338, 0.0338] [−0.0338, 0.0338]
0.8% [−1.1411, 0.8518] [−0.3045, 0.3045] [−0.1817, 0.1817] [−0.1817, 0.1817]
1.2% [−3.9941, 2.7392] [−0.8339, 0.8339] [−0.3489, 0.3489] [−0.3489, 0.3489]
1.4% [−13.8887, 8.9001] [−0.9225, 0.9225] [−0.4709, 0.4709] [−0.4709, 0.4709]
1.6% NaN [−1.0022, 1.0022] [−0.6354, 0.6354] [−0.6354, 0.6354]
2% NaN NaN NaN NaN

y3
[mm]

0% −1.4775 −1.4775 −1.4775 −1.4775
0.2% [−1.6522,−1.3221] [−1.5132,−1.4418] [−1.5129,−1.4428] [−1.5129,−1.4428]
0.8% [−2.6260,−0.6870] [−1.6919,−1.2631] [−1.6436,−1.3231] [−1.6436,−1.3231]
1.2% [−5.2967, 0.9913] [−1.5190,−1.0174] [−1.7644,−1.2224] [−1.5190,−1.2224]
1.4% [−14.2120, 6.6733] [−1.4402,−0.9685] [−1.8425,−1.1614] [−1.4402,−1.1614]
1.6% NaN [−1.3692,−0.9245] [−1.9397,−1.0892] [−1.3692,−0.9245]
2% NaN NaN NaN NaN

x8
[mm]

0% −0.2677 −0.2677 −0.2677 −0.2677
0.2% [−0.3535,−0.1920] [−0.2906,−0.2447] [−0.2902,−0.2453] [−0.2902,−0.2453]
0.8% [−0.8693, 0.1295] [−0.4393,−0.0960] [−0.3817,−0.1571] [−0.3817,−0.1571]
1.2% [−2.2916, 0.9755] [−0.7138, 0.1785] [−0.4769,−0.0687] [−0.4769,−0.0687]
1.4% [−7.1082, 3.7166] [−0.7612, 0.2259] [−0.5431,−0.0085] [−0.5431,−0.0085]
1.6% NaN [−0.8039, 0.2686] [−0.6299, 0.0740] [−0.6299, 0.0740]
2% NaN NaN NaN NaN

y8
[mm]

0% −0.6157 −0.6157 −0.6157 −0.6157
0.2% [−0.7218,−0.5291] [−0.6455,−0.5859] [−0.6452,−0.5867] [−0.6452,−0.5867]
0.8% [−1.3550,−0.2696] [−0.8040,−0.4274] [−0.7567,−0.4839] [−0.7567,−0.4839]
1.2% [−3.0489, 0.1556] [−1.0569,−0.1745] [−0.8625,−0.3941] [−0.8625,−0.3941]
1.4% [−8.6827, 1.2956] [−1.1037,−0.1277] [−0.9320,−0.3382] [−0.9320,−0.3382]
1.6% NaN [−1.1460,−0.0855] [−1.0192,−0.2707] [−1.0192,−0.0855]
2% NaN NaN NaN NaN

3.1. Dynamic analysis of the gearbox system of the wind turbine

To obtain a dynamic model of the gearbox, the two shafts are discretized with two-node
elements with four degrees of freedom. Therefore, components of the vector u are written as
following

u = [x1, y1, θx1, θy1, x2, y2, θx2, θy2]
T (3.1)

The values of the different parameters used in the gearbox model are given in Table 3.

The contact between the pinion and the wheel is expressed as follows

Mc

[

θ̈1
θ̈2

]

+Kc

[

θ1
θ2

]

=

[

C1
C2

]

(3.2)

with

Mc =

[

I1 0
0 I2

]

Kc =

[

s10K(t) s12K(t)
s21K(t) s20K(t)

]

(3.3)
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Fig. 4. Values of displacements with uncertainty

Fig. 5. Model of the gearbox reducer system of a wind turbine

Fig. 6. Discretization

and

I1 =
1

2
M1
(d1
2

)2
I2 =

1

2
M2
(d2
2

)2
(3.4)

The mesh stiffness is a function of time, the average part of φ is removed

K(t) = K12
(

1 +
K12 − k12
K12

)

[φ−mean(φ)] φ = square[2πfent(c12 − 1)100] (3.5)
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Table 3. Characteristics of the gearbox system

Variables Nomenclature Values Units

Z1 number of sprocket (pinion) teeth 20 –

Z2 number of teeth of the wheel 40 –

m module 0.003 m

b width of teeth 0.030 m

di1 inside diameter of pinion 0.020 m

di2 inside diameter of wheel 0.030 m

N1 rotation speed of pinion 1200 tr/min

N2 rotation speed of wheel 750 tr/min

A pressure angle 20 deg

ro density of steel 7850 kg/m3

C1 motor torque 50 Nm

C2 receiver torque 100 Nm

M1 mass of the pinion 1.8 Kg

M2 mass of the wheel 2.5 Kg

fen gear mesh frequency Z1N1/60 Hz

T gear mesh period 1/f s

L length of shafts 0.048 m

Fig. 7. Dynamic model of the transmission with damping

The mesh stiffness is given by

K12 = c12k12 (3.6)

where c12 is the driving ratio of the transmission

c12 =
1 + 1

Z1

π cosα

(

sinα
2 +

√

(sinα)2

4 + 2
Z2
1

)
+

1 + 1
Z2

π cosα

(

sinα
2 +

√

(sinα)2

4 + 2
Z2
2

)
(3.7)

and k12 is stiffness of a pair of teeth in contact (Henriot, 1978)

k12 =
b

0.04723 + 0.15551
Z1
+ 0.25791

Z2

(3.8)

Finally, the damping matrix is given by

C = αM+ βK (3.9)

Therefore, the system model is calculated by the following equation

Mtotalü+Ctotalu̇+Ktotalu = F(u) (3.10)
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with

Mtotal =Mm +Mc +Mr Ctotal = Cm + Cr Ktotal = Km +Kc +Kr

Cm = Cr = C Km = Kr = K
(3.11)

Equation (4.10) is written as follows











Mm 0 0 0
0 Mm +Mc 0 0
0 0 Mr +Mc 0
0 0 0 Mr











ü+











Cm 0 0 0
0 Cm 0 0
0 0 Cr 0
0 0 0 Cr











u̇

+











Km 0 0 0
0 Km +Kc 0 0
0 0 Kr +Kc 0
0 0 0 Kr











u = F(u)

(3.12)

The mass matrix is expressed as follows

M =
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(3.13)

3.2. Results of simulation

Modeling and simulation were done using the Intlab interval calculator library in Matlab
software. The computation process converges to the results shown in Figs. 8, 9, 10 and 11.
Computation time takes 110 s on a regular computing machine (Intel (R) Core (TM) i7-6500U
CPU@2.50GHz, 2 cores).
The evaluation of the Newmark method (Faroughi and Lee, 2015) with uncertainties in real

cases provided disappointing and often divergent results. For this, the choice of design variables
expressed by intervals acts on the convergence of the model. The objective of this part is to
study the dynamic behavior of the gearbox of the wind turbine in the presence of uncertainties
on some design variables. The main advantage is to obtain convergent results that reflect the
efficiency of the interval calculation technique coupled with the Newmark method to study the
dynamic behavior of the system.
The design parameters studied with uncertainties are the module m and the receiver

torque cr. Indeed, the uncertainty on m reflects in real cases the manufacturing problems and
the precision error of diameters of the gear. Whereas, the uncertainty on cr is introduced since
the estimation of the receiving torque is imprecise. For this, we introduced 3% of uncertainty
on m and cr. Figures 8, 9, 10 and 11 show eight displacements of the vector u. As shown in
Figs. 8 and 9, the variation of the module m has a great influence on the rotational movements
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Fig. 8. Displacement of the gearbox input shaft with 3% of uncertainty on the module m

Fig. 9. Displacement of the gearbox output shaft with 3% of uncertainty on the module m
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Fig. 10. Displacement of the gearbox input shaft with 3% of uncertainty on the receiver torque cr

Fig. 11. Displacement of the gearbox output shaft with 3% of uncertainty on the receiver torque cr
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(θx1, θx2, θy1, θy2) compared to the linear displacements (x1, x2, y1, y2). On the other hand, the
variation of cr acts mainly on the linear displacements.

The envelopes obtained for different displacements have the same paces as the curves obtained
with fixed values. This shows the effectiveness of the applied method. These envelopes give a
complete idea about functioning of the studied system. In addition, based on the results of
simulations obtained, the designer can choose the right concept (solution) that better meets the
performance requirements imposed, which facilitates the sizing of the system.

In conclusion, by coupling the interval calculation technique with the Newmark method, we
obtained convergent results for an uncertainty rate of 3%. In the following Section, a comparison
using the Monte Carlo method is made to validate the simulations results (Vittal and Teboul,
2005).

4. Validation with Monte Carlo

To validate the results obtained previously, we used the Monte Carlo method. Simulation results
of this method require a very long computation time. For this, we have limited our calculation
only for the two displacements x1 and θx1 in order to minimize the simulation time. Thus,
1000 random values (close to mean values of the variables m and cr) were chosen.

Fig. 12. Displacement of the gearbox input shaft with uncertainty on the module m
(using Monte Carlo simulation)

Fig. 13. Displacement of the gearbox input shaft with uncertainty on the receiver torque cr
(using Monte Carlo simulation)
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The simulation results are shown in Figs. 12 and 13. The curves (in purple for m and in
blue for cr) frame the envelopes obtained by the interval calculation technique. This shows that
the results obtained previously are consistent with the actual dynamic behavior of the studied
system.

5. Conclusion

In this study, the validity of the interval calculation technique coupled with the finite element
method to simulate the static or dynamic behavior of a mechatronic system has been proven.
Indeed, this type of calculation makes it possible to minimize the number of simulations, and
consequently, to reduce the calculation time. Moreover, the proposed method offers a complete
idea of the behavior of the system in the presence of uncertainties. This leads to a good sizing
of the system to design. In the static case, the use of the intersection method allows one to limit
the search space for different design parameters. This facilitates and helps the designer to choose
the values that respect the required performance. In the dynamic case, the interval calculation
coupling with the Newmark method provides not only a single evaluation of the behavior of
the system, but rather an envelope of solutions. This gives a better description of the dynamic
operation of the gearbox of a wind turbine with uncertain parameters. This coupling remains
applicable for an uncertainty rate that does not exceed 3%.
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